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ABSTRACT

In this study the mechanisms for low-frequency variability of summerArctic sea ice are analyzed using long

control simulations from three coupled models (GFDL CM2.1, GFDL CM3, and NCAR CESM). Despite

different Arctic sea ice mean states, there are many robust features in the response of low-frequency summer

Arctic sea ice variability to the three key predictors (Atlantic and Pacific oceanic heat transport into the

Arctic and the Arctic dipole) across all three models. In all three models, an enhanced Atlantic (Pacific) heat

transport into the Arctic induces summer Arctic sea ice decline and surface warming, especially over the

Atlantic (Pacific) sector of the Arctic. A positive phase of the Arctic dipole induces summer Arctic sea ice

decline and surface warming on the Pacific side, and opposite changes on the Atlantic side. There is robust

Bjerknes compensation at low frequency, so the northward atmospheric heat transport provides a negative

feedback to summer Arctic sea ice variations. The influence of the Arctic dipole on summer Arctic sea ice

extent is more (less) effective in simulations with less (excessive) climatological summer sea ice in theAtlantic

sector. The response of Arctic sea ice thickness to the three key predictors is stronger in models that have

thicker climatological Arctic sea ice.

1. Introduction

The rapid shrinking of summer Arctic sea ice extent

(SIE) over the satellite era signals a dramatic change in

the cryosphere (Comiso et al. 2008). This observed rapid

Arctic sea ice decline is also found to be the leading

cause in the observed amplified Arctic surface warming

over the last several decades (Serreze et al. 2009; Screen

and Simmonds 2010). If the observed rapid decline trend

of September Arctic SIE were to continue, then the

summer Arctic Ocean would become nearly ice free

within the next decade (Overland andWang 2013). This

projection is much sooner than that simulated by most

models from phase 5 of the Coupled Model Intercom-

parison Project (CMIP5) under increased anthropo-

genic radiative forcing (Stroeve et al. 2012; Massonnet

et al. 2012). In addition, the CMIP5 multimodel mean

forced response shows stronger warming in global mean

surface temperature but a much slower decline in

summer Arctic SIE than that observed over the period

2001–12 (Zhang and Knutson 2013). This pair of

observed–model discrepancies strongly suggests that

anthropogenic radiative forcing might not be the sole

dominant cause for the observed Arctic sea ice decline.

Previous studies identified various physical processes

at interannual–decadal time scales that might be im-

portant for the observed summer Arctic sea ice decline,

such as the positive ice–infrared feedback (Francis and

Hunter 2006; Deser and Teng 2008) and the ice–albedo

feedback (Winton 2006; Perovich et al. 2008; Steele et al.

2010), warming of the Atlantic Water in the Arctic

(Zhang et al. 1998; Polyakov et al. 2010; Alexeev et al.

2013), increased Pacific inflow through the Bering Strait

(Shimada et al. 2006; Woodgate et al. 2012), and the

interaction between the Arctic dipole and transpolar ice

drift (Wu et al. 2006; Wang et al. 2009; Overland and

Wang 2010; Overland et al. 2012; Wettstein and

Deser 2014).

Long historical and paleoproxy records indicate

pronounced fluctuations in the Arctic climate at

multidecadal–centennial time scales. For example,

multidecadal variability has been recorded in the ArcticCorresponding author: Dawei Li, daweil@princeton.edu
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surface air temperature (SAT), and the amplified Arctic

warming during the 1930s appears similar in some

ways to the warming during recent decades (Polyakov

et al. 2003; Semenov and Bengtsson 2003). Reduced

Arctic sea ice associated with the natural variability

in the oceanic inflow into the Barents Sea is likely a

driver for the early twentieth-century Arctic warming

(Bengtsson et al. 2004). A high-resolution multicentury

algal proxy for Arctic sea ice cover reveals substantial

multidecadal and centennial Arctic sea ice variability

(Halfar et al. 2013).

Low-frequency variability of winter Arctic sea ice is

found to be anticorrelated with the Atlantic multi-

decadal variability (AMV) in both climate model sim-

ulations (Mahajan et al. 2011; Day et al. 2012) and

multicentury historical and paleoproxy records (Miles

et al. 2014). The Atlantic meridional overturning circu-

lation (AMOC), which has likely strengthened since the

mid-1970s as inferred from its observed subsurface

ocean temperature fingerprints (Zhang 2007, 2008), may

have led to stronger Atlantic heat transport into the

Arctic and contributed to the observed rapid decline of

summerArctic SIE since 1979 (Zhang 2015). Swart et al.

(2015) identified a 7-yr period (2007–13) of near-zero

trend in the observedArctic September SIE that is likely

linked to natural variability. Natural variability is also

found to be important for summer Arctic SIE in models

as seen by the variability among individual ensemble

members of NCAR CCSM3 and CCSM4 simulations

under the same changes in anthropogenic forcing

(Holland et al. 2008a; Kay et al. 2011). Winter Arctic sea

ice, especially in the Barents Sea, is also strongly

influenced by the Atlantic Ocean heat transport.

Analysis of CMIP5 coupled model simulations implies

that the recent decline in winter SIE over the Barents

Sea is strongly related to the strengthening of the At-

lantic heat transport (Li et al. 2017). If the Atlantic

heat transport into the Arctic were to weaken in the

near future due to multidecadal natural variability,

then we may see a much longer hiatus period in the

decline of both winter (Yeager et al. 2015) and summer

(Zhang 2015) Arctic SIE.

The apparent inconsistency between the observed

rapid declining trend of September Arctic SIE and

that in the CMIP5 multimodel ensemble (Zhang and

Knutson 2013) might be partially caused by an under-

estimation of simulated low-frequency summer Arctic

sea ice internal variability. Key to a more reliable pro-

jection of future changes in summer Arctic sea ice may

be a better understanding of the driving mechanisms of

the low-frequency summer Arctic sea ice variability.

Using a 3600-yr-long control simulation of the Geo-

physical Fluid Dynamics Laboratory (GFDL) Climate

Model, version 2.1 (CM2.1), Zhang (2015) identified

three key predictors for summer Arctic SIE variability

at multidecadal–centennial time scales: the Atlantic and

Pacific Ocean heat transport into the Arctic and the

Arctic dipole in the atmosphere. The observed decline

trend in September Arctic SIE could have been partially

induced by the low-frequency natural variability asso-

ciated with the three key physical processes. These

results, however, are mainly based upon the analyses

from a single climate model (GFDL CM2.1). On the

other hand, understanding the role of low-frequency

natural variability in the observed summer Arctic SIE

decline is quite challenging because of the short obser-

vational records over theArctic region. As a step toward

better understanding at this stage, we investigate the

mechanisms for low-frequency variability of summer

Arctic sea ice in different coupled models to identify the

more robust elements across different models.

The predictors identified by Zhang (2015) include

both dynamic (Arctic dipole) and thermodynamic (At-

lantic and Pacific Ocean heat transport) contributions.

Here we apply the same approach to the available long

control simulations from three coupled models with

differentArctic sea icemean states to test the robustness

of the mechanisms proposed by Zhang (2015). Hence,

the focus is on the response of low-frequency summer

Arctic sea ice variability to these three key predictors

(the Atlantic and Pacific heat transport into the Arctic

and the Arctic dipole) and to elucidate the influence of

the Arctic sea ice mean states on the response. Section

2 describes the data and methods used in the analysis

and the comparison of simulated Arctic sea ice mean

states and variability in the three models. Sections 3–7

show the detailed results, including the response of

summer Arctic sea ice concentration, extent, thick-

ness, mass, and surface air temperature to the key

predictors, and the influence of the Arctic sea ice mean

states on the response. Though our work is mainly

focused on the influence of the key predictors on

summer Arctic sea ice, as in Zhang (2015), we also

include some discussion on winter Arctic sea ice mass

and SIE responses in sections 5 and 6. The contribu-

tions from each predictor to the observed sea ice de-

cline are discussed in section 8. Conclusions and a

discussion on the robustness of the mechanisms for the

low-frequency summer Arctic sea ice variability are

presented in section 9.

2. Descriptions of data and methods and simulated
Arctic sea ice climatology and variability

The model data used in this study are 3600-yr seg-

ments of the preindustrial control simulations from
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GFDL CM2.1 (Delworth et al. 2006) and the GFDL

Climate Model, version 3 (CM3) (Donner et al. 2011;

Griffies et al. 2011), and an 1801-yr segment of the

preindustrial control simulation from the Community

Earth System Model (CESM) Large Ensemble project

(Kay et al. 2015) hosted by the National Center for

Atmospheric Research (NCAR). Only 1801 years of

output are available for the NCAR CESM control

simulation, which is configured with the Community

Atmosphere Model, version 5 (CAM5), with the car-

bon cycle model (BGC). The main differences be-

tween GFDL CM2.1 and CM3 are in their associated

atmospheric models. The atmospheric model used in

GFDL CM3 [i.e., the Atmosphere Model, version 3

(AM3)] has a higher vertical resolution in the atmo-

sphere, and a substantially modified dynamical core,

aerosol physics, atmospheric chemistry, and convec-

tion scheme, compared to the atmospheric model

(AM2) used in GFDL CM2.1 (Donner et al. 2011).

GFDL CM2.1 and CM3 essentially share the same

ocean and sea ice models, except that the dry snow and

sea ice albedos in CM3 are higher and more realistic

than the corresponding values in CM2.1 (Donner et al.

2011; Griffies et al. 2011).

Since the focus of this study is on the variability at

multidecadal and centennial time scales, all model

data are 30-yr low-pass filtered (LF) before further

analysis. A comparison of the results with those using

alternative multidecadal cutoff periods (i.e., 25 or

40 yr) indicates that our results are not sensitive to the

choice of a 30-yr low-pass filter. A ‘‘significant corre-

lation’’ means the p value from a two-tailed test using a

t distribution with adjusted effective degrees of free-

dom is less than 0.01. Here we use long preindustrial

control simulations because most available control

simulations under current radiative conditions for the

satellite period are not long enough for a study fo-

cusing on multidecadal and centennial time-scale

variability.

A reference temperature of 08C is used when calcu-

lating ocean heat transport. For Atlantic heat transport

anomalies, the choice of reference temperature is not

important, since the integrated mass budget for the en-

tire Atlantic basin across the Arctic Circle is approxi-

mately closed. For the Pacific heat transport across the

Arctic Circle, for which the anomalies are dominated by

the yT 0 term (i.e., advection of the anomalous temper-

ature by the mean flow) in all three models (probably as

result of the coarse resolutions in these models), the

term yT 0 is insensitive to the choice of reference

temperature.

The observed Arctic sea ice concentration (SIC) data

for the period 1979–2015 are from the National Snow

and Ice Data Center (NSIDC) (Cavalieri et al. 1996).

For comparison, a much longer SIC dataset re-

constructed by Walsh et al. (2017) is used to investigate

the centennial time-scale trend and variability of Arctic

sea ice. In this study we define the Arctic SIE as the total

marine area within the Arctic Circle (66.58N) where

SIC$ 15%. Correspondingly, the climatological sea ice

edge is defined as the contour line of 15% climatological

SIC. The Barents Sea SIE is defined as the total marine

area where SIC $ 15% within the Barents Sea region

(708–818N, 158–608E).
The observed sea level pressure (SLP) data are from

the National Centers for Environmental Prediction

(NCEP)–NCAR reanalysis (Kalnay et al. 1996) for the

period 1948–2015. The Twentieth Century Reanalysis,

version 2 (C20) (Compo et al. 2011), SLP data from the

NOAA/Earth SystemResearch Laboratory (ESRL) are

also used. TheArctic dipole (AD) index is defined as the

principal component (PC) of the second empirical or-

thogonal function (EOF2) mode of spring [April–July

(AMJJ)] SLP anomalies within the Arctic Circle. As

shown in previous studies (Wettstein and Deser 2014;

Zhang 2015), springtime values are used for exploring

the AD’s impact on September sea ice because the

correlation between AD and September Arctic SIE is

strongest for this season.

Figure 1 shows the climatological September SIC

simulated by the three coupled models, along with the

observed climatology (from NSIDC) over the satellite

period. Compared with the recent observed climatology,

the simulated September SIC in GFDL CM2.1 is lower,

while the simulated September SIC in NCAR CESM is

excessive in general, especially in the Atlantic sector.

The simulated September SIC in GFDL CM3 lies in

between GFDL CM2.1 and NCAR CESM, and overall,

of the three models, looks most similar to the observa-

tions. All three preindustrial control runs simulate

higher SIC in the central Arctic close to the North Pole

than the recently observed regardless of the overall SIE

being larger or smaller than that observed. Note that the

purpose of this comparison with the satellite observa-

tions is not to provide a strict evaluation of the models’

skills in simulating the climatology, as the long control

simulations from the three models are under constant

preindustrial radiative conditions. Rather, our main

purpose here is to understand the observed summer

Arctic sea ice decline over the satellite period from the

perspective of low-frequency variability and how the

mechanisms causing the low-frequency variability of

summer Arctic sea ice are affected by the Arctic sea ice

mean states.

More pronounced differences among the models are

found in their simulated climatological sea ice mass
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(SIM), which by definition is the mass of sea ice per unit

area and thus depends on both SIC and sea ice thickness

(SIT). The simulated climatological September Arctic

SIM is lowest in GFDL CM2.1 and greatest in NCAR

CESM, with GFDL CM3 in between (Fig. 2, left). The

spatial patterns of the simulated climatological SIT of

the three models are similar to those of their respective

simulated climatological SIM, with the thinnest sea ice

in GFDL CM2.1 and the thickest sea ice in NCAR

CSEM among the three models (not shown). Despite its

very small summer Arctic sea ice cover, GFDL CM2.1

has a very strong seasonal cycle of Arctic SIE (Donner

et al. 2011) with excessive winter Arctic sea ice cover

(Fig. 2). The annual meanArctic SIE of GFDLCM2.1 is

comparable to that of NCAR CESM, though the ice is

much thinner in GFDL CM2.1 (Fig. 2, right).

Figure 3 shows the standard deviations of September

SIC in the three models and observations, and Fig. 4

compares the standard deviations of 30-yr LF Septem-

ber SIC in the three models. The relationship between

sea ice low-frequency variability and the mean state is

not monotonic; that is, the model with the intermediate

FIG. 1. Comparison of climatological September SIC (%). Modeling results are from

control runs of (a) GFDL CM2.1, (b) GFDL CM3, (c) NCAR CESM, and (d) observed

climatological September Arctic SIC over 1979–2015 (from NSIDC). The black lines mark

the positions of the observed climatological September sea ice edge (where SIC drops

to 15%), and the red lines show the simulated climatological September sea ice edge in each

model. The white lines in (a) and (b) are due to the polar projection of SIC simulated on

tripolar grids in GFDL models.
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mean state sea ice (GFDL CM3) has the largest low-

frequency variability in September SIC, while both the

model with the least mean state sea ice (GFDL CM2.1)

and the model with the most mean state sea ice (NCAR

CESM) have smaller low-frequency variability in Sep-

tember SIC (Fig. 4). This indicates that there is not a

simple relationship between climatological sea ice

thickness and the relative level of low-frequency

FIG. 2. Comparison of simulated (left) climatological September and (right) annual mean Arctic SIM (kgm22).

Results are from (a) GFDL CM2.1, (b) GFDL CM3, and (c) NCAR CESM preindustrial control runs. The black

lines mark the positions of observed climatological September and annual mean sea ice edge (where SIC drops

to 15%), and the red lines show the simulated climatological September and annual mean sea ice edge in each

model’s preindustrial control run. The white lines in (a) and (b) are due to the polar projection of SIC simulated on

tripolar grids in GFDL models.
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variability of SIC across these three models, as will be

discussed more fully in section 5.

3. Multiple regression model for low-frequency
variability of September Arctic sea ice extent

In this study we aim to investigate the response of low-

frequency summer Arctic sea ice variability to the three

previously identified key predictors (Zhang 2015), that

is, annual mean northward Atlantic heat transport

(HTATL) and Pacific heat transport (HTPAC) across the

Arctic Circle and the AD, as well as the influence of the

Arctic sea ice mean states on the response. As discussed

in Zhang (2015), the predictors are selected from vari-

ous thermodynamic and wind forcings over the Arctic

that have direct impacts onArctic sea ice. An alternative

wind forcing predictor (i.e., the first mode of Arctic SLP

or the Arctic Oscillation) does not have much direct

impact on September Arctic sea ice low-frequency var-

iability in the models and thus is not used as a predictor.

An alternative thermodynamic forcing predictor would

be the net upward surface heat flux FSFC averaged over

the Arctic domain; this is strongly correlated with the

Atlantic heat transport into the Arctic (discussed in

section 7) and thus provides a negative feedback on sea

ice changes and is not used as a predictor.

FIG. 3. Comparison of simulated September Arctic SIC SD (%). Modeling results are from (a) GFDL CM2.1, (b) GFDL CM3,

(c) NCAR CESM, (d) reconstructed September Arctic SIC SD over 1850–2014 [data from Walsh et al. (2017)], and (e) observed Sep-

tember Arctic SIC SD over 1979–2015 (from NSIDC). The long-term trend over 1850–2014 has been removed from the Walsh SIC data

before the calculation of the SD in (d). The black lines mark the positions of the observed climatological September sea ice edge (where

SIC drops to 15%), and the blue lines show the simulated climatological September sea ice edge in each model. The white lines in (a) and

(b) are due to the polar projection of SIC simulated on tripolar grids in GFDL models.
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For low-frequency variability, the correlations be-

tween HTATL and AD, and between HTATL and

HTPAC, are negligible and not significant for all three

models. Thus, HTATL can be considered relatively

independent from the other two predictors. The cor-

relation between HTPAC and AD is weak but signifi-

cant (r 5 0.27) in GFDL CM2.1, marginally significant

(r 5 0.15) in GFDL CM3, and not significant (r 5 0.18)

in NCAR CESM. Thus, HTPAC and AD are not com-

pletely independent in GFDL models; however, their

weak correlation is accounted for in the multiple re-

gression model discussed later.

In all three models, the simulated positive AD pat-

terns have a negative SLP anomaly over the Kara Sea

and a positive SLP anomaly over Greenland, which

compares well with that observed (Fig. 5). This dipole

pattern of SLP anomaly modulates the transpolar ice

drift from the Pacific side to theAtlantic side. The dipole

pattern also contributes to the SLP difference across the

Fram Strait, which strongly affects sea ice export

through the strait (Smedsrud et al. 2013, 2017).

At multidecadal–centennial time scales, the 30-yr LF

September Arctic SIE anomalies show significant anti-

correlations with the three LF key predictors in all three

coupled models, except for the correlation with AD in

NCAR CESM (Fig. 6). Following Zhang (2015), we

derive a multiple regression model for the LF Sep-

tember Arctic SIE anomalies using the three LF pre-

dictors (HTATL, HTPAC, and AD):

SIE(t)5�
i

b
i
P
i
(t2 t

i
)1 « , (1)

where bi (Table 1, third column) is the multiple re-

gression coefficient, ti (Table 1, second column) is the

time lead when the predictor Pi has the maximum an-

ticorrelation with September Arctic SIE, « is the re-

sidual, and SIER(t)5�ibiPi(t2 ti) is the reconstructed

Arctic SIE based on the multiple regression. The cor-

relations between the simulated September Arctic SIE

and its reconstructed counterparts are r5 0.75, 0.76, and

0.60 in GFDL CM2.1, GFDL CM3, and NCAR CESM,

respectively.

In regions close to the climatological sea ice edges

where the climatological September SIC is low (Fig. 1),

we expect the September SIC to be more sensitive to

changes in the thermodynamic or wind forcing. This is

confirmed by the regression patterns of September SIC

on the three key predictors (Fig. 7). As the climato-

logical sea ice edges shift poleward in models with less

climatological September SIE (Fig. 1), the locations of

the most significant responses in September SIC to the

three key predictors also shift with it as expected

(Fig. 7).

FIG. 4. Comparison of the SD of 30-yr LF simulated September

Arctic SIC (%). Results are from (a) GFDL CM2.1, (b) GFDL

CM3, and (c) NCAR CESM. The black lines mark the positions of

the observed climatological September sea ice edge (where SIC

drops to 15%), and the blue lines show the simulated climatological

September sea ice edge in each model.
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The impacts of standardized HTATL and HTPAC on

September SIE are of the same order, although the

standard deviation (SD) of LF HTATL (SD 5 8.5, 6.3,

and 6.4 TW) is much larger than that of LF HTPAC

(SD 5 0.35, 0.62, and 0.39 TW) in all three models.

Hence, HTPAC appears to be much more efficient in

causing low-frequency variability of Arctic summer SIC

than HTATL. One reason is that the fresher Pacific

Water stays on top of the saltier and denser Atlantic

Water and has more direct interaction with sea ice. The

impact of HTATL on September SIC is important only at

multidecadal–centennial time scales so that enough heat

carried by the Atlantic inflow can be diffused upward to

affect sea ice. In all three models, at low frequency, the

HTATL anomaly is affected by the AMOC variability

and is significantly correlated with the AMOC index

(defined as the maximum annual mean Atlantic over-

turning streamfunction at 458N). The HTPAC anomaly is

influenced by the mean flow advection of temperature

anomalies in summer through the Bering Strait and thus

is significantly correlated with the summer [August–

October (ASO)] Pacific decadal oscillation (PDO) index

(defined as the leadingmode of summerNorth Pacific sea

surface temperature anomalies north of 208N).

FIG. 5. Spatial patterns of (a)–(c) simulated and (d),(e) observed positive phases of theAD.AD is defined as theEOF2 of theAMJJ SLP

anomaly north of the Arctic Circle. The AD pattern is normalized and dimensionless such that the amplitude of AD is carried by the AD

index (PC2). To remove the impact of different spatial resolutions on the normalization of the ADpattern, we have the sum of squares for

each EOF2 as N/NCM2.1, that is, the ratio of the total number of grid points within the Arctic Circle N in (a)–(d) to that of GFDL CM2.1

NCM2.1. Hence, each PC2 ismultiplied by (N/NCM2.1)
0.5. TheADaccounts for 10%, 9%, 9%, 13%, and 15%of the total variance in (a)–(e),

respectively. The SDs of unfiltered AD indices are 37.6, 40.4, 38.0, 31.4, and 32.4 hPa in (a)–(e), respectively, and the SDs of the 30-yr LF

AD indices are 7.8, 7.6, and 7.7 hPa in (a)–(c), respectively.
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Among the three models, the relatively lower corre-

lation between simulated and reconstructed September

Arctic SIE in theNCARCESM ismainly due to the lack

of correlation between the AD and September Arctic

SIE in this simulation (Fig. 6). However, this does not

imply that the AD has no significant impact on summer

SIC in NCAR CESM. In all three models, a positive

phase of AD leads to a reduction of September SIC on

the Pacific side and an increase of September SIC on the

Atlantic side by transporting more sea ice from the Pa-

cific side to the Atlantic side (Fig. 7, right). In both

GFDL CM2.1 and CM3, the increase of SIE on the

Atlantic side is less than the reduction on the Pacific

side; hence, a positive Arctic dipole leads to a net re-

duction of the September Arctic SIE.

However, in NCARCESM as a result of the excessive

climatological sea ice and colder mean state on the At-

lantic side, the anomalous sea ice exported through the

Fram Strait will not be melted but tends to stay in sea ice

form, in contrast to the two GFDL models where the

anomalous sea ice exported through the Fram Strait is

quickly melted. Hence, in NCAR CESM the reduction

of SIE on the Pacific side is largely balanced by the ex-

pansion of SIE on the Atlantic side, resulting in an in-

significant net impact of the Arctic dipole on the

September Arctic SIE and thus no correlation between

them. The net impact of AD on September Arctic SIE

thus depends on the climatological sea ice distribution: it

is more efficient in simulations with less climatological

summer sea ice on the Atlantic side as in GFDL CM2.1,

but it is much less effective in simulations with excessive

climatological summer sea ice on the Atlantic side as in

NCAR CESM.

The results also suggest that over the satellite period,

the response of September Arctic SIE to AD in the real

world may be more comparable to that shown in GFDL

CM3, since the simulated overall climatological SIC,

especially on the Atlantic side, is closer to that observed

in GFDL CM3 than in the other two models. The Sep-

tember Arctic SIE variability is more sensitive to the

FIG. 6. Multiple regression of September Arctic SIE on three key predictors. The results are shown for (a) GFDL CM2.1, (b) GFDL

CM3, and (c) NCAR CESM. For each model, September Arctic SIE (black line) is plotted with (top) inverted annual mean HTATL (red

line), (middle top) inverted annual mean HTPAC (orange line), (middle bottom) inverted spring AD (blue line), and (bottom) re-

constructed September Arctic SIE (green line). All time series are 30-yr LF and normalized by their SDs. The SDs for GFDL CM2.1,

GFDL CM3, and NCARCESM are 8.5, 6.3, and 6.4 TW for LF HTATL, respectively; 0.35, 0.62, and 0.39 TW for LF HTPAC, respectively;

7.8, 7.6, and 7.7 hPa for LFAD, respectively; 0.22, 0.35, and 0.193 106 km2, for simulated LF SeptemberArctic SIE, respectively; and 0.17,

0.26, and 0.11 3 106 km2 for reconstructed LF September Arctic SIE, respectively.
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AD in future scenarios with much less September Arctic

SIE, and thus much less sea ice on theAtlantic side, than

in the past preindustrial scenarios with much more

September Arctic SIE. This result is also consistent

with a recent modeling study using the NCAR CCSM3

showing that the AD has an important impact on the

September Arctic SIE in the future scenario-driven cli-

mate simulations (Wettstein and Deser 2014).

4. Response of September Arctic surface air
temperature to key predictors

The responses of September Arctic SAT to HTATL,

HTPAC, andAD are largely consistent with the responses

of September Arctic SIC (Figs. 7 and 8). Regions with

stronger SIC response also show larger anticorrelated

SAT change in general, where a decrease in SIC corre-

sponds to an increase in SAT, and vice versa (Fig. 8). A

positiveHTATL (HTPAC) anomaly accompanies a surface

warming over the Arctic, especially over the Atlantic

(Pacific) side, and a positive phase of AD is associated

with a surface warming over the Pacific side of the Arctic

Ocean, and a surface cooling over the Atlantic side. The

results here are consistent with previous studies showing

that theArctic sea ice variability plays a central role in the

Arctic SAT variability at the multidecadal time scale

(Bengtsson et al. 2004; Serreze et al. 2009; Screen and

Simmonds 2010).

Some exceptions to the abovementioned perspective

are seen in NCAR CESM, where a positive HTATL

anomaly is associated with a surface cooling over the

Canadian Arctic Archipelago (Fig. 8c) and a positive

HTPAC anomaly accompanies a surface cooling near the

Greenland Sea (Fig. 8c). Nevertheless, in both cases

SAT indeed varies consistently with anticorrelated SIC

changes, which shows minor increases in the cooling

regions (Fig. 7c). The surface cooling in both cases is also

associated with increased sea ice mass and thickness in

the Canadian Arctic Archipelago and in the eastern

Greenland Sea (Figs. 9c and 10c).

September Arctic SAT (i.e., averaged September SAT

over the Arctic) is strongly correlated with HTATL and

HTPAC at low frequency. We can build a multiple re-

gression model for September Arctic SAT at low fre-

quency, using HTATL and HTPAC as predictors. The

correlations between reconstructed and original Sep-

tember Arctic SAT are 0.71 (CM2.1), 0.73 (CM3), and

0.52 (CESM). Adding AD as a predictor to the multiple

regression model does not substantially improve the

correlations for Arctic-averaged SAT, because the

AD’s net impact on Arctic SAT is relatively weak as a

result of the cancellation of large-scale opposite-signed

changes of SAT in the Pacific and the Atlantic sectors

(Fig. 8, right). Similar results are also found for annual

mean Arctic SAT; that is, we can build a multiple re-

gression model for annual mean Arctic SAT at low

frequency, using HTATL and HTPAC as predictors. The

correlations between reconstructed and original annual

mean Arctic SAT are even higher: 0.81 (CM2.1), 0.80

(CM3), and 0.66 (CESM).

5. Response of Arctic sea ice mass and thickness to
key predictors

All three models show similar patterns of response to

the key predictors in summer and winter Arctic SIM

(Figs. 9 and 10). At multidecadal–centennial time scales,

an enhanced HTATL generally leads to a reduction of

summer and winter SIM in the Arctic basin (Figs. 9 and

10), with the strongest response in the Greenland–

Barents Sea and near the eastern Siberian coast in

winter (Fig. 10). Positive anomalies in the HTPAC also

lead to a reduction in summer and winter SIM (Figs. 9

and 10). The response of SIM is larger on the Pacific side

than on the Atlantic side, especially in the winter season

(Fig. 10). The response of SIM to a positive phase of AD

displays a distinct dipole pattern—a net growth of SIM

on the Atlantic side and a net reduction on the Pacific

side (Figs. 9 and 10)—consistent with a stronger trans-

polar ice drift into the Atlantic side. In fact, we can also

build a multiple regression model to reconstruct Arctic

SIM using the same three predictors and get similar

results as for Arctic SIE.

Previous observational-based studies (Jones et al.

1998, 2003; Carmack et al. 2015, 2016) showed that Pa-

cific Water is advected by the ocean circulation to the

TABLE 1. The multiple regression of September Arctic SIE on

three key predictors. The second column shows the maximum

correlations and the corresponding time leads (yr) between each

predictor and September Arctic SIE in parentheses. The third

column records the multiple regression coefficients of September

Arctic SIE to each predictor.

Model

Correlation with September

SIE (time lead in yr) Multiple regression

Atlantic heat transport

CM2.1 20.50 (2) 20.013 3 106 km2 TW21

CM3 20.58 (6) 20.029 3 106 km2 TW21

CESM 20.46 (4) 20.014 3 106 km2 TW21

Pacific heat transport

CM2.1 20.51 (2) 20.28 3 106 km2 TW21

CM3 20.50 (0) 20.22 3 106 km2 TW21

CESM 20.38 (1) 20.18 3 106 km2 TW21

Arctic dipole

CM2.1 20.37 (1) 20.0067 3 106 km2 hPa21

CM3 20.30 (0) 20.010 3 106 km2 hPa21

CESM 20.05 (0) 20.001 3 106 km2 hPa21
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FIG. 7. Regressions of September SIC anomalies. SIC anomalies are regressed on four SDs of (left) HTATL (28 TW), (center) HTPAC

(1.8 TW), and (right) AD (31 hPa) for (a) GFDL CM2.1, (b) GFDL CM3, and (c) NCAR CESM. All time series are 30-yr LF prior to

regression. Here SD is the averaged SD of each LF predictor of all three models. For each regression, the time lead is the same as that for

September Arctic SIE. The original regressions correspond to one SD of each predictor. To link the regression maps to Eq. (1), in which

the unit of the SIE anomaly is 106 km2, the regression maps have been normalized by one SD of SIE. In this way, the regression maps

represent the SIC anomaly resulting from each predictor among the anomalous SIC associated with every unit (106 km2) of the SIE

anomaly. The one SD of SIE of the three models is about 0.25 3 106 km2; hence, the regression after normalization corresponds to

a regression on four SDof each predictor. (The normalization by one SDof SIE is also used in Figs. 8–10.) Thewhite lines in (a) and (b) are

due to the polar projection of SIC simulated on tripolar grids in GFDL models.
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Atlantic side (Fram Strait), and Atlantic Water is ad-

vected by the ocean circulation into the central Arctic,

and can reach the Pacific side (Canadian Basin) and

release heat upward (Shimada et al. 2004; Polyakov et al.

2010). Hence, the far-field response of SIM to ocean

heat transport can be explained by the ocean circula-

tions in the Arctic basin, which spread the heat carried

by the oceanic inflows, inducing net basal melting and

the reduction of sea ice thickness in all seasons. The

reduction of sea ice thickness in all seasons contributes

to the reduction of summer sea ice concentrations in

regions close to climatological sea ice edges in the cen-

tral Arctic, even on the opposite side of the Arctic from

the oceanic inflow.

The abovementioned response in SIM to the key

predictors largely reflects the response in SIT, which has

FIG. 8. As in Fig. 7, but for September SAT (at 2m).
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very similar regression patterns (not shown). Comparing

the SIM response across the three models, an interesting

pattern emerges: models with thicker climatological sea

ice (Fig. 2) generally have a stronger response in SIM to

the variations in key predictors (Figs. 9 and 10). Among

the three models, the responses of SIT and SIM to the

anomalous Atlantic or Pacific Ocean heat transport into

the Arctic basin are strongest in NCAR CESM, which

has the most climatological SIT, and weakest in GFDL

CM2.1, which has the least climatological SIT.

The results also support the proposed mechanism that

an enhanced ocean heat transport into the Arctic leads to

net basal melting and thus a reduction in Arctic ice mass

in all seasons (Zhang 2015). With thicker climatological

sea ice, the damping effect of the vertical conductive heat

flux through the sea ice to the basal oceanic forcing is

FIG. 9. As in Fig. 7, but for September SIM. The white lines in (a) and (b) are due to the polar projection of SIM simulated on tripolar grids

in GFDL models.
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weaker, thus the response in SIT has to be stronger so that

changes in the damping conductive heat flux can even-

tually balance changes in the basal oceanic forcing to

reach a quasi-equilibrium state. Interestingly, Bitz and

Roe (2004) and Holland et al. (2008b) found that the

greatest reduction of SIT as a result of the elevated at-

mospheric CO2 also occurs to the initially thickest sea ice.

The stronger SIM response to AD in models with

thicker climatological sea ice (Figs. 9 and 10, right) can

be roughly explained from the perspective of the trans-

polar sea ice mass flux. With larger climatological sea

ice thickness h, under similar anomalous transpolar ice

drift y0 induced by a positive phase of AD, the anoma-

lous transpolar ice mass flux in the central Arctic in-

duced by AD (y0rh, where r is the density of ice) from

the Pacific side to the Atlantic side would be greater,

contributing to greater reduction of SIM on the Pacific

side and larger increase of SIM on the Atlantic side.

FIG. 10. As in Fig. 7, but for March SIM. The white lines in (a) and (b) are due to the polar projection of SIM simulated on tripolar grids in

GFDL models.
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Hence, it is not surprising to see the strongest response

of SIM to AD in the NCAR CESM and the weakest

response of SIM to AD in the GFDL CM2.1 among the

three models.

The response of SIM and SIT in all seasons contrib-

utes to the response of summer SIC and SIE (Zhang

2015). However, the response of summer SIC and SIE to

all key predictors is not linearly proportional to the re-

sponse of SIM and SIT. For example, the response of

summer SIC and SIE to HTATL is largest in GFDLCM3

among the three models (Fig. 7 and Table 1). The re-

sponse of SIM and SIT to HTATL is weakest in GFDL

CM2.1, which leads to its weaker response of summer

SIC and SIE compared to that in GFDL CM3. On the

other hand, although the response of SIM and SIT to

HTATL is strongest in NCAR CESM, its very thick cli-

matological sea ice maintains a large gradient in SIM

and SIC near the sea ice edge, which reduces the changes

in SIC and the shift of sea ice edge in response to

changes in SIT. Hence, NCARCESM displays a weaker

response of summer SIC and SIE than GFDL CM3 as

result of its thicker climatological sea ice. In this case,

the model with intermediate climatological SIT has the

largest response in summer SIC and SIE.

Since the majority of HTATL is lost along its pathways

to the central Arctic, especially through releasing sur-

face heat flux into the atmosphere and warming the

ocean heat content in the Barents Sea, only a very small

amount of heat flux anomaly reaches the central Arctic,

where it can diffuse across the halocline to affect sea ice.

This explains why HTPAC anomalies can cause a similar

change in sea ice as HTATL even though the amplitude

of HTATL is much larger.

At low frequency in a quasi-equilibrium state, the

ocean-to-ice heat flux anomaly at the bottom of sea ice

in response to changes in HTATL has to be balanced by

the anomalous upward heat flux released by theAtlantic

Water at the bottom of the halocline (presented in all

three models), because the time tendency of the upper-

ocean heat content (over the surface mixed layer and

the halocline layer) would be negligible at low fre-

quency. Similarly at low frequency, the total anomalous

upward heat flux released by the Atlantic Water at the

bottom of the halocline has to be balanced by the

anomalous Atlantic heat transport entering the central

Arctic. The observed mean Atlantic Water temperature

decreases by about 28C from the northern boundary of

the Barents Sea to the Canadian coast in the central

Arctic, and the exit temperature of the Atlantic Water

in the western Fram Strait is also colder than the en-

tering temperature (Polyakov et al. 2010), suggesting

the Atlantic Water has lost heat along its pathways in

the central Arctic.

At low frequency averaged over the central Arctic

domain (defined as the region with greater than 15%

climatological annual mean SIC, that is, within the cli-

matological September sea ice edge), the upper-200-m

ocean heat content tendency is negligible compared to

the anomalous ocean-to-ice heat flux in all three models

(Fig. 11). Therefore, the system is in a quasi-equilibrium

state at low frequency, and the anomalous heat released

from the ocean to the ice is largely from the anomalous

ocean heat transport entering the central Arctic domain

(both from the side boundary of the central Arctic do-

main and from below the permanent halocline within

the central Arctic domain).

Figure 12 shows the heat budget averaged over the

central Arctic domain, based on the following heat budget

equation for sea ice:
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HereMi is sea ice mass, Li is the latent heat of fusion of

ice, vi is the sea ice velocity, Fo is the ocean-to-ice heat

flux, and FSFC is the net upward surface heat flux. The

term = � (viMi) represents ice mass transport divergence.

At low frequency, the variance of the tendency term,

2Li›Mi/›t, is much smaller than that of Fo in all

three models. Hence, the system is close to a quasi-

equilibrium state at low frequency, and Fo is strongly

anticorrelated with 2FSFC 1 Li= � (viMi) (Fig. 12). The

inverted SIM 2Mi changes with Fo (as also shown in

Fig. 11) and is out of phase with 2FSFC 1 Li= � (viMi)

(Fig. 12). This means that when the system is close to

the quasi-equilibrium state at low frequency, the anom-

alous Fo is the main cause for the Arctic SIM variations

[i.e., Arctic SIM decreases (increases) with increased

(decreased) ocean-to-ice heat flux], whereas the net

downward surface heat flux 2FSFC term plus the term

associated with SIM divergence Li= � (viMi) provide

a strong negative feedback (damping) to Arctic SIM

variations.

Other atmospheric variables, such as TOA fluxes or

SAT anomalies, cannot directly affect Arctic sea ice. If

there were any impacts from TOA fluxes or SAT

anomalies on Arctic sea ice, they would work only

through the anomalous FSFC; that is, FSFC represents the

net atmospheric thermodynamic effect on sea ice and

appears in the heat budget equation for sea ice [Eq. (2)].

At low frequency, the system is close to a quasi-

equilibrium state (Fig. 12). If FSFC were the cause for

Arctic SIM variations, then an increased downward

surface heat flux (2FSFC. 0) would be associated with a

SIM reduction (2Mi . 0), that is, a positive correlation

between 2FSFC and 2Mi. Similarly, if changes in SIM
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divergence were the cause for Arctic SIM variations,

then an increased divergence [Li= � (viMi). 0] would be

associated with a SIM reduction, that is, a positive cor-

relation between Li= � (viMi) and 2Mi. At low fre-

quency, averaged over the central Arctic domain, each

of the two individual terms [diagnosed 2FSFC and the

term associated with SIM divergence, Li= � (viMi)] are

of the same order of magnitude as Fo. However, neither

of these two terms has a positive correlation with 2Mi in

any of these three models [r 5 20.19, 20.07, and 20.71

for2FSFC and r520.65,20.87, and20.28 forLi= � (viMi)].

Thus, they have either damping or negligible influences

on low-frequency Arctic SIM changes and do not serve

as a direct causal factor for these changes.

6. Linkage between September Arctic SIE and
March Barents Sea SIE anomalies

The Atlantic Water entering the Arctic mainly moves

along two pathways—one through the eastern Fram

Strait and the other into the Barents Sea through the

Barents Sea Opening (BSO) (Årthun et al. 2012). The

Barents Sea usually has the largest SIE in March–April

and is almost ice free in September (Smedsrud et al.

2013). Although the recent observed decline of summer

Arctic sea ice is mainly on the Pacific side of the Arctic

basin, the observed decline of winter Arctic sea ice is

most pronounced in the Barents Sea (Årthun et al. 2012;

Li et al. 2017). The winter (March) SIE over the Barents

Sea has been found to be strongly coupled to the At-

lantic heat transport across the BSO (HTBSO) (Årthun

et al. 2012; Smedsrud et al. 2013; Onarheim et al. 2015;

Zhang 2015; Li et al. 2017). At low frequency, in all three

models, there are strong correlations between HTATL

and HTBSO, with HTATL leading by a few years. The

simulated March Barents Sea SIE is strongly anti-

correlated with HTBSO and lags the anticorrelated

HTATL by a few years. Hence, the March Barents Sea

SIE could serve as an indicator of the Atlantic heat

transport and varies coherently with summerArctic SIE.

At multidecadal time scales, coherent variations of

March Barents Sea SIE and September Arctic SIE are

found in all three coupled models, revealing the im-

portance of the Atlantic inflow (Fig. 13). The highest

FIG. 11. The 30-yr LF time series of ocean-to-ice heat flux Fo, upper-200-m ocean heat content

tendency rcph›T/›t, and inverted sea icemass2Mi. Time series over the entiremodel period are

shown: 3600 yr for GFDL (a) CM2.1 and (b) CM3 and 1800 yr for (c) NCARCESM. Each term

has been averaged over the central Arctic domain (defined as the region with greater than 15%

climatological annual mean SIC, i.e., within the climatological September sea ice edge).
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correlation is found in GFDL CM3 (r 5 0.73). In-

terestingly, the observed March Barents Sea SIE and

SeptemberArctic SIE are also highly correlated (r5 0.72;

Fig. 13). The detrended unfiltered observed time series

is influenced more by high-frequency variability at the

interannual time scale, and the linkage (correlation)

between the two variables is much weaker (lower, i.e.,

r 5 0.34) at the interannual time scale. The correlation

between the undetrended observed time series is higher,

because they are both affected by the strong decadal–

multidecadal low-frequency decline trends. The coherent

changes between March Barents Sea SIE and September

Arctic SIE in all threemodels and observations suggest an

important role for enhanced Atlantic inflow in the ob-

served winter and summer Arctic sea ice decline trends

over the satellite era.

Within the Arctic Circle, winter Arctic SIE anomalies

are mainly due to SIC changes on the Atlantic side (e.g.,

Barents Sea); hence, at low frequency winter Arctic SIE

is strongly anticorrelated with only the Atlantic heat

transport, consistent with previous studies (Årthun et al.

2012; Yeager et al. 2015; Li. et al. 2017). The Pacific heat

transport and AD anomalies do not have much impact

on winter Arctic SIE, although they can affect winter

Arctic sea ice mass (Fig. 10), because within the Arctic

Circle the climatological winter SIC is much higher on

the Pacific side than on the Atlantic side. In summer, the

climatology SIC is also low on the Pacific side, thus

summer Arctic SIE is also affected by Pacific heat

transport and AD.

7. Bjerknes compensation

At multidecadal–centennial time scales, in all three

models theHTPAC variability is relatively small (SD5 0.35,

0.62, and 0.39 TW) and the HTATL variability (SD 5 8.5,

6.3, and 6.4 TW) dominates the zonally integrated pole-

ward ocean heat transport anomalies across the Arctic

Circle. A positive HTATL anomaly, typically driven by

a stronger AMOC, would cause warming of the Atlantic

Water in the Nordic seas and induce a positive FSFC

anomaly in the Arctic domain (Fig. 14). Since the heat

capacity of the atmosphere is small and the top-of-the-

atmosphere (TOA) radiative flux FTOA is relatively

FIG. 12. The 30-yr LF time series of 2Li›Mi/›t, Fo, 2FSFC 1 Li= � (viMi), and 2Mi. Time

series over the entire model period are shown: 3600 yr for GFDL (a) CM2.1 and (b) CM3 and

1800 yr for (c) NCAR CESM. Each term has been averaged over the central Arctic domain.

SDs of the first three terms (Wm22) are 0.03, 0.14, and 0.14 for CM2.1; 0.06, 0.23, and 0.23 for

CM3; and 0.12, 0.27, and 0.27 for CESM.
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insensitive to the surface heating/cooling, the positive

upward surface heat flux anomaly is mainly balanced

by a reduced zonally integrated poleward atmospheric

heat transport into the Arctic (HTATM) (Fig. 14). Here

HTATM is calculated as the residual between inte-

grated outgoing TOA flux and FSFC. This method for

calculating HTATM has also been used in many previous

studies (Shaffrey and Sutton 2006; van der Swaluw et al.

2007; Jungclaus and Koenigk 2010; Farneti and Vallis

2013; Koenigk and Brodeau 2014; Zhang 2015). The

anticorrelated relationship between HTATM and HTATL

is not trivial (Farneti and Vallis 2013). Only when

the TOA flux is insensitive to changes in FSFC and

when the anomalous ocean heat storage is small (i.e., a

quasi-equilibrium state so that the anomalous HTATL

convergence is close to the anomalousFSFC) it is possible

to have a strong anticorrelated relationship between

HTATM and HTATL. From another point of view, the

surface warming in the Arctic domain associated with

a positive HTATL anomaly reduces the meridional tem-

perature gradient in the atmosphere, which leads to re-

duced baroclinicity and weaker poleward heat transport

by atmospheric transient eddies. This anticorrelation

between zonally integrated poleward ocean and atmo-

spheric heat transport anomalies was coined Bjerknes

compensation (Bjerknes 1964) and has been found

in many previous studies at the decadal time scale

(Shaffrey and Sutton 2006; van der Swaluw et al. 2007;

Jungclaus and Koenigk 2010; Farneti and Vallis 2013;

Koenigk and Brodeau 2014).

At multidecadal–centennial time scales, the HTATL

into the Arctic is strongly anticorrelated with the

northward HTATM across the Arctic Circle in all three

models. This example of Bjerknes compensation in the

Arctic region provides a negative feedback to summer

Arctic SIE variations in all three models. It serves as

another reason why HTATL is relatively inefficient in

affecting summer Arctic sea ice variability compared to

HTPAC, in addition to the fact that Pacific Water in-

teracts more directly with sea ice, as discussed in section

3. The modeled Bjerknes compensation is also consis-

tent with previous observation-based studies showing

that the atmospheric heat transport into the Arctic re-

gion declined (Smedsrud et al. 2008) and that the At-

lantic heat transport across the BSO increased over

recent decades (Årthun et al. 2012).

8. Linkage with the observed summer Arctic sea
ice decline

In this section, we estimate the contribution from each

predictor to the observed decline in September Arctic

SIE, based on the regression coefficients between each

predictor and summer Arctic SIE derived from their

multidecadal–decadal trends sampled from the models.

These estimates are similar to the regression coefficients

derived from corresponding LF variables in the models.

This is because the multidecadal–decadal trends sam-

pled from themodels are an important component of the

low-frequency variability. Using the regression co-

efficients derived from multidecadal–decadal trends in-

stead of those from corresponding LF variables is done

for the purpose of comparison with observed trends.

There is no direct observational information on HTATL.

However, other recent studies (Yeager et al. 2015;

Li et al. 2017) have inferred that HTBSO associated

with natural variability has increased by approximately

FIG. 13. September Arctic SIE (black lines) and March Barents

Sea SIE (green lines) anomalies. Results are from (a) GFDL

CM2.1, (b) GFDLCM3, (c) NCARCESM, and (d) NSIDC (1979–

2015). The scale bar at the top-right corner of (a)–(c) represents the

length of observational records (37 yr). All time series are nor-

malized by their SDs, and the simulated SIEs are 30-yr LF, while

the observed SIEs are not filtered. The SDs of LF September

Arctic SIE are 0.22, 0.35, and 0.19 3 106 km2, and the SDs of LF

March Barents Sea SIE are 0.035, 0.098, and 0.037 3 106 km2 for

GFDL CM2.1, GFDL CM3, and NCAR CESM, respectively. The

SDs of the unfiltered observed September and March SIE are 1.08

and 0.148 3 106 km2, respectively.
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30 TW during the 37-yr period (1979–2015). The ob-

served HTPAC trend for this 37-yr period is unknown,

but the observed HTPAC increased by 4 TW in a recent

11-yr period (2001–11; Woodgate et al. 2012). We

consider that this decadal trend is not likely due to the

long-term changes in anthropogenic forcing but more

likely due to natural variability. The observed AD has

an increasing trend of 62 hPa for the 37-yr period (1979–

2015), after removing the centennial long-term AD trend

derived from the C20 data, which is negative [i.e.,229hPa

(100yr)21, equivalent to 211hPa (37yr)21]. The positive

AD trend since 1979, which is opposite of the removed

long-term negative trend, is more likely due to natural

variability.

We sampled all possible 37- and 11-yr segments of the

desired periods from the models. Less than 5% of all

sampled 37-yr trends of HTBSO and AD and 11-yr trends

of HTPAC in the models are comparable in amplitude to

the abovementioned estimated observed trends, which

we speculate may indicate a deficiency in model simula-

tions of internal variability. For HTBSO, the analysis of Li

et al. (2017) suggests a common model deficiency in low-

frequency internal variability and the need for model

improvements in future studies. Because themodels have

apparently substantially underestimated the amplitudes

of variability of all predictors at low frequency, we use

only the regression coefficients between each predictor

and September Arctic SIE derived from the models, and

then we multiply the abovementioned available esti-

mated observed trends of the predictors with the corre-

sponding regression coefficients to infer the contributions

of the predictors to the observed summer Arctic sea ice

decline trend.

The contribution of the HTBSO trend [30 TW

(37 yr)21] to the observed September Arctic SIE decline

trend over the 37 years (;3.213 106 km2) is estimated to

be 1.17 (36%), 1.32 (41%), and 0.75 (23%)3 106 km2 for

the GFDL CM2.1, GFDL CM3, and NCAR CESM,

respectively. This is based on the modeled regression

coefficients between 37-yr September Arctic SIE trends

and 37-yr HTBSO trends20.039 (CM2.1),20.044 (CM3),

and 20.025 (CESM) 3 106 km2 TW21. The contribu-

tion of the AD trend [62 hPa (37 yr)21] to the observed

September Arctic SIE decline trend over the 37 years is

estimated to be 0.62 (19%) and 0.74 (23%) 3 106 km2

for GFDL CM2.1 and CM3, respectively (CESM is not

used here). This is based on modeled regression co-

efficients between 37-yr September Arctic SIE trends

and 37-yr AD trends 20.010 (CM2.1) and 20.012

(CM3) 3 106 km2hPa21. The contribution of HTPAC

trend [4 TW (11 yr)21] to the observed September

Arctic SIE decline trend over 2001–11 (2.133 106 km2)

is estimated to be 0.88 (41%), 0.68 (32%), and 0.56

(26%) 3 106 km2 for the CM2.1, CM3, and CESM,

respectively. This is based on modeled regression co-

efficients between 11-yr September Arctic SIE trends

and 11-yr HTPAC trends:20.22 (CM2.1),20.17 (CM3),

and 20.14 (CESM) 3 106 km2 TW21. The above-

mentioned estimates suggest that natural variability

influences via the three predictors could have made

substantial contributions to the observed September

Arctic SIE decline, although confidently determining

the causes of the observed trends in the three predictors

requires further study.

9. Conclusions and discussion

In this study we investigated the mechanisms for low-

frequency variability of summer Arctic sea ice using

available long control simulations from three coupled

models: GFDLCM2.1,GFDLCM3, andNCARCESM.

In particular, we focused on the response of low-

frequency summer Arctic sea ice variability to the

three previously identified key predictors (Zhang 2015),

that is, annual mean northward Atlantic heat transport

(HTATL) and Pacific heat transport (HTPAC) across the

FIG. 14. Schematic diagram illustrating Bjerknes compensation in three models. The polewardHTATL are shown

as red arrows, and HTATM are shown as blue arrows. The net upward surface heat fluxes are marked by orange

arrows, and the net TOA radiative fluxes are shown as green arrows. The values with the red arrows denote the one

SD of 30-yr LFHTATL in eachmodel, and the other values (with other colored arrows) are the magnitudes of other

LF heat fluxes regressed on the corresponding one SDof LFHTATL. The time leads of 1, 3, and 0 yr at themaximum

anticorrelations of r 5 20.82, 20.72, and 20.68 between LF HTATL and HTATM for GFDL CM2.1, GFDL CM3,

and NCAR CESM are used for the regressions, respectively.
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Arctic Circle and the Arctic dipole (AD). We also ex-

amined the influence of theArctic sea ice mean states on

themodels’ responses. As discussed in Zhang (2015), the

three key predictors represent the thermodynamic

forcing (Atlantic and Pacific heat transport into the

Arctic) and wind forcing over the Arctic region (Arctic

dipole) that could have direct causal impacts on summer

Arctic sea ice at low frequency.

The simulated Arctic sea ice mean states are quite

different in the three coupled models. GFDL CM2.1

simulates less climatological summer SIE, while NCAR

CESM simulates more climatological SIE. The simu-

lated climatological summer SIE and SIC in GFDL

CM3 lie in between those in GFDL CM2.1 and NCAR

CESM. Similarly, the simulated climatological Arctic

sea ice mass (SIM) and sea ice thickness (SIT) are least

for GFDL CM2.1, most for NCAR CESM, and in be-

tween for GFDL CM3.

Despite the very different Arctic sea ice mean states in

the threemodels and the different atmosphere, ocean, and

sea ice components, especially between GFDL and

NCAR models, there are many robust features in the re-

sponse of low-frequency summer Arctic sea ice variability

to the three key predictors (HTATL, HTPAC, and AD)

across all three models. For example, there are significant

correlations between the simulated September Arctic SIE

and its reconstructed counterpart using a multiple re-

gression model with the three key predictors. The impacts

of standardizedHTATL andHTPAC on September SIE are

of the same order, although the amplitude of HTATL low-

frequency variability is much larger than that of HTPAC.

While both are important influences,HTPAC ismuchmore

efficient in causing low-frequency variability of Arctic

summer SIC than HTATL. In all models, HTATL is signif-

icantly correlated with the AMOC index, and HTPAC is

significantly correlated with the summer PDO index.

An enhanced HTATL (HTPAC) induces a reduction of

summer Arctic SIC and annual mean Arctic SIM and

SIT, and a surface warming over the Arctic, especially

over the Atlantic (Pacific) sector. A positive phase of

AD induces a reduction of summer Arctic SIC and an-

nual mean SIM and SIT, a surface warming over the

Pacific sector, and opposite changes over the Atlantic

sector by transporting more ice from the Pacific side to

the Atlantic side.

In all three models and the satellite observations,

there are significant linkages between March SIE vari-

ations over the Barents Sea and September Arctic SIE,

suggesting an important role for enhanced Atlantic in-

flow in both winter and summer Arctic sea ice decline

trends over the satellite era.

There is robust Bjerknes compensation at low fre-

quency in all three models; that is, the anomalous

Atlantic heat transport into the Arctic is strongly anti-

correlated with the northward atmospheric heat trans-

port across the Arctic Circle at multidecadal–centennial

time scales. Thus, the northward atmospheric heat

transport across the Arctic Circle provides negative

feedback to summer Arctic SIE variations at low fre-

quency in the models.

We also noted interesting aspects of the response of

low-frequency summer Arctic sea ice variability, de-

pending on the Arctic sea ice mean states. For example,

as the climatological sea ice edges shift poleward in

models with less climatological September SIE, the lo-

cations of the most significant response in September

SIC also shift poleward.

The influence of the AD is more effective in simula-

tions with less climatological summer sea ice on the

Atlantic side as in GFDL CM2.1, but it is much less

effective in simulations with relatively large amounts of

climatological summer sea ice on the Atlantic side as in

NCAR CESM. Models with thicker climatological sea

ice have a much stronger response in SIM and SIT to

the key thermodynamic predictors. Additionally, with

thicker climatological sea ice, the transpolar ice mass flux

induced by theADwould be greater, resulting in stronger

opposite SIM changes in the Pacific and Atlantic sectors

of the centralArctic.Meanwhile, the response of summer

SIC and SIE to all key predictors is not linearly pro-

portional to the response of SIM and SIT.

This study also estimated that the three predictors

could have made substantial contributions to the ob-

served September Arctic SIE decline. For a more reli-

able projection of future changes in summer Arctic sea

ice, we need to better understand the key mechanisms

driving the low-frequency natural variability in summer

Arctic sea ice and sustained long-term observations of

the key drivers of the low-frequency summer Arctic sea

ice variability, such as the Atlantic and Pacific heat

transport into the Arctic. If the Atlantic heat transport

into the Arctic were to weaken in the near future as a

result of multidecadal natural variability, we may see a

hiatus or pause in the decline of both winter (Yeager

et al. 2015) and summer (Zhang 2015) Arctic SIE.
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